3.1.49 \(\int \frac {A+B x+C x^2}{(d+e x)^3 (a+c x^2)} \, dx\) [49]

3.1.49.1 Optimal result
3.1.49.2 Mathematica [A] (verified)
3.1.49.3 Rubi [A] (verified)
3.1.49.4 Maple [A] (verified)
3.1.49.5 Fricas [B] (verification not implemented)
3.1.49.6 Sympy [F(-1)]
3.1.49.7 Maxima [A] (verification not implemented)
3.1.49.8 Giac [A] (verification not implemented)
3.1.49.9 Mupad [B] (verification not implemented)

3.1.49.1 Optimal result

Integrand size = 27, antiderivative size = 305 \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=-\frac {C d^2-B d e+A e^2}{2 e \left (c d^2+a e^2\right ) (d+e x)^2}+\frac {B c d^2-2 A c d e+2 a C d e-a B e^2}{\left (c d^2+a e^2\right )^2 (d+e x)}+\frac {\sqrt {c} \left (A c d \left (c d^2-3 a e^2\right )-a \left (c d^2 (C d-3 B e)-a e^2 (3 C d-B e)\right )\right ) \arctan \left (\frac {\sqrt {c} x}{\sqrt {a}}\right )}{\sqrt {a} \left (c d^2+a e^2\right )^3}-\frac {\left (B c d \left (c d^2-3 a e^2\right )-(A c-a C) e \left (3 c d^2-a e^2\right )\right ) \log (d+e x)}{\left (c d^2+a e^2\right )^3}+\frac {\left (B c d \left (c d^2-3 a e^2\right )-(A c-a C) e \left (3 c d^2-a e^2\right )\right ) \log \left (a+c x^2\right )}{2 \left (c d^2+a e^2\right )^3} \]

output
1/2*(-A*e^2+B*d*e-C*d^2)/e/(a*e^2+c*d^2)/(e*x+d)^2+(-2*A*c*d*e-B*a*e^2+B*c 
*d^2+2*C*a*d*e)/(a*e^2+c*d^2)^2/(e*x+d)-(B*c*d*(-3*a*e^2+c*d^2)-(A*c-C*a)* 
e*(-a*e^2+3*c*d^2))*ln(e*x+d)/(a*e^2+c*d^2)^3+1/2*(B*c*d*(-3*a*e^2+c*d^2)- 
(A*c-C*a)*e*(-a*e^2+3*c*d^2))*ln(c*x^2+a)/(a*e^2+c*d^2)^3+(A*c*d*(-3*a*e^2 
+c*d^2)-a*(c*d^2*(-3*B*e+C*d)-a*e^2*(-B*e+3*C*d)))*arctan(x*c^(1/2)/a^(1/2 
))*c^(1/2)/(a*e^2+c*d^2)^3/a^(1/2)
 
3.1.49.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 277, normalized size of antiderivative = 0.91 \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=\frac {-\frac {\left (c d^2+a e^2\right )^2 \left (C d^2+e (-B d+A e)\right )}{e (d+e x)^2}+\frac {2 \left (c d^2+a e^2\right ) \left (B c d^2-2 A c d e+2 a C d e-a B e^2\right )}{d+e x}+\frac {2 \sqrt {c} \left (A c d \left (c d^2-3 a e^2\right )+a \left (a e^2 (3 C d-B e)+c d^2 (-C d+3 B e)\right )\right ) \arctan \left (\frac {\sqrt {c} x}{\sqrt {a}}\right )}{\sqrt {a}}-2 \left (B c d \left (c d^2-3 a e^2\right )-(A c-a C) e \left (3 c d^2-a e^2\right )\right ) \log (d+e x)+\left (B c d \left (c d^2-3 a e^2\right )-(A c-a C) e \left (3 c d^2-a e^2\right )\right ) \log \left (a+c x^2\right )}{2 \left (c d^2+a e^2\right )^3} \]

input
Integrate[(A + B*x + C*x^2)/((d + e*x)^3*(a + c*x^2)),x]
 
output
(-(((c*d^2 + a*e^2)^2*(C*d^2 + e*(-(B*d) + A*e)))/(e*(d + e*x)^2)) + (2*(c 
*d^2 + a*e^2)*(B*c*d^2 - 2*A*c*d*e + 2*a*C*d*e - a*B*e^2))/(d + e*x) + (2* 
Sqrt[c]*(A*c*d*(c*d^2 - 3*a*e^2) + a*(a*e^2*(3*C*d - B*e) + c*d^2*(-(C*d) 
+ 3*B*e)))*ArcTan[(Sqrt[c]*x)/Sqrt[a]])/Sqrt[a] - 2*(B*c*d*(c*d^2 - 3*a*e^ 
2) - (A*c - a*C)*e*(3*c*d^2 - a*e^2))*Log[d + e*x] + (B*c*d*(c*d^2 - 3*a*e 
^2) - (A*c - a*C)*e*(3*c*d^2 - a*e^2))*Log[a + c*x^2])/(2*(c*d^2 + a*e^2)^ 
3)
 
3.1.49.3 Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2160, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x+C x^2}{\left (a+c x^2\right ) (d+e x)^3} \, dx\)

\(\Big \downarrow \) 2160

\(\displaystyle \int \left (\frac {c \left (x \left (B c d \left (c d^2-3 a e^2\right )-e (A c-a C) \left (3 c d^2-a e^2\right )\right )+A c d \left (c d^2-3 a e^2\right )-a \left (c d^2 (C d-3 B e)-a e^2 (3 C d-B e)\right )\right )}{\left (a+c x^2\right ) \left (a e^2+c d^2\right )^3}+\frac {A e^2-B d e+C d^2}{(d+e x)^3 \left (a e^2+c d^2\right )}+\frac {e \left (e (A c-a C) \left (3 c d^2-a e^2\right )-B c d \left (c d^2-3 a e^2\right )\right )}{(d+e x) \left (a e^2+c d^2\right )^3}+\frac {e \left (a B e^2-2 a C d e+2 A c d e-B c d^2\right )}{(d+e x)^2 \left (a e^2+c d^2\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {c} \arctan \left (\frac {\sqrt {c} x}{\sqrt {a}}\right ) \left (A c d \left (c d^2-3 a e^2\right )-a \left (c d^2 (C d-3 B e)-a e^2 (3 C d-B e)\right )\right )}{\sqrt {a} \left (a e^2+c d^2\right )^3}+\frac {\log \left (a+c x^2\right ) \left (B c d \left (c d^2-3 a e^2\right )-e (A c-a C) \left (3 c d^2-a e^2\right )\right )}{2 \left (a e^2+c d^2\right )^3}-\frac {A e^2-B d e+C d^2}{2 e (d+e x)^2 \left (a e^2+c d^2\right )}+\frac {-a B e^2+2 a C d e-2 A c d e+B c d^2}{(d+e x) \left (a e^2+c d^2\right )^2}-\frac {\log (d+e x) \left (B c d \left (c d^2-3 a e^2\right )-e (A c-a C) \left (3 c d^2-a e^2\right )\right )}{\left (a e^2+c d^2\right )^3}\)

input
Int[(A + B*x + C*x^2)/((d + e*x)^3*(a + c*x^2)),x]
 
output
-1/2*(C*d^2 - B*d*e + A*e^2)/(e*(c*d^2 + a*e^2)*(d + e*x)^2) + (B*c*d^2 - 
2*A*c*d*e + 2*a*C*d*e - a*B*e^2)/((c*d^2 + a*e^2)^2*(d + e*x)) + (Sqrt[c]* 
(A*c*d*(c*d^2 - 3*a*e^2) - a*(c*d^2*(C*d - 3*B*e) - a*e^2*(3*C*d - B*e)))* 
ArcTan[(Sqrt[c]*x)/Sqrt[a]])/(Sqrt[a]*(c*d^2 + a*e^2)^3) - ((B*c*d*(c*d^2 
- 3*a*e^2) - (A*c - a*C)*e*(3*c*d^2 - a*e^2))*Log[d + e*x])/(c*d^2 + a*e^2 
)^3 + ((B*c*d*(c*d^2 - 3*a*e^2) - (A*c - a*C)*e*(3*c*d^2 - a*e^2))*Log[a + 
 c*x^2])/(2*(c*d^2 + a*e^2)^3)
 

3.1.49.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2160
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] 
:> Int[ExpandIntegrand[(d + e*x)^m*Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, 
 d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
 
3.1.49.4 Maple [A] (verified)

Time = 0.60 (sec) , antiderivative size = 317, normalized size of antiderivative = 1.04

method result size
default \(-\frac {c \left (\frac {\left (-A a c \,e^{3}+3 A \,c^{2} d^{2} e +3 B a c d \,e^{2}-B \,c^{2} d^{3}+C \,a^{2} e^{3}-3 C a c \,d^{2} e \right ) \ln \left (c \,x^{2}+a \right )}{2 c}+\frac {\left (3 A a c d \,e^{2}-A \,d^{3} c^{2}+a^{2} B \,e^{3}-3 B a c \,d^{2} e -3 C \,a^{2} d \,e^{2}+C a c \,d^{3}\right ) \arctan \left (\frac {c x}{\sqrt {a c}}\right )}{\sqrt {a c}}\right )}{\left (e^{2} a +c \,d^{2}\right )^{3}}-\frac {A \,e^{2}-B d e +C \,d^{2}}{2 \left (e^{2} a +c \,d^{2}\right ) e \left (e x +d \right )^{2}}-\frac {2 A c d e +B a \,e^{2}-B c \,d^{2}-2 a d e C}{\left (e^{2} a +c \,d^{2}\right )^{2} \left (e x +d \right )}-\frac {\left (A a c \,e^{3}-3 A \,c^{2} d^{2} e -3 B a c d \,e^{2}+B \,c^{2} d^{3}-C \,a^{2} e^{3}+3 C a c \,d^{2} e \right ) \ln \left (e x +d \right )}{\left (e^{2} a +c \,d^{2}\right )^{3}}\) \(317\)
risch \(\text {Expression too large to display}\) \(1358\)

input
int((C*x^2+B*x+A)/(e*x+d)^3/(c*x^2+a),x,method=_RETURNVERBOSE)
 
output
-c/(a*e^2+c*d^2)^3*(1/2*(-A*a*c*e^3+3*A*c^2*d^2*e+3*B*a*c*d*e^2-B*c^2*d^3+ 
C*a^2*e^3-3*C*a*c*d^2*e)/c*ln(c*x^2+a)+(3*A*a*c*d*e^2-A*c^2*d^3+B*a^2*e^3- 
3*B*a*c*d^2*e-3*C*a^2*d*e^2+C*a*c*d^3)/(a*c)^(1/2)*arctan(c*x/(a*c)^(1/2)) 
)-1/2*(A*e^2-B*d*e+C*d^2)/(a*e^2+c*d^2)/e/(e*x+d)^2-(2*A*c*d*e+B*a*e^2-B*c 
*d^2-2*C*a*d*e)/(a*e^2+c*d^2)^2/(e*x+d)-(A*a*c*e^3-3*A*c^2*d^2*e-3*B*a*c*d 
*e^2+B*c^2*d^3-C*a^2*e^3+3*C*a*c*d^2*e)/(a*e^2+c*d^2)^3*ln(e*x+d)
 
3.1.49.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 868 vs. \(2 (291) = 582\).

Time = 76.07 (sec) , antiderivative size = 1759, normalized size of antiderivative = 5.77 \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=\text {Too large to display} \]

input
integrate((C*x^2+B*x+A)/(e*x+d)^3/(c*x^2+a),x, algorithm="fricas")
 
output
[-1/2*(C*c^2*d^6 - 3*B*c^2*d^5*e - 2*B*a*c*d^3*e^3 + B*a^2*d*e^5 + A*a^2*e 
^6 - (2*C*a*c - 5*A*c^2)*d^4*e^2 - 3*(C*a^2 - 2*A*a*c)*d^2*e^4 + (3*B*a*c* 
d^4*e^2 - B*a^2*d^2*e^4 - (C*a*c - A*c^2)*d^5*e + 3*(C*a^2 - A*a*c)*d^3*e^ 
3 + (3*B*a*c*d^2*e^4 - B*a^2*e^6 - (C*a*c - A*c^2)*d^3*e^3 + 3*(C*a^2 - A* 
a*c)*d*e^5)*x^2 + 2*(3*B*a*c*d^3*e^3 - B*a^2*d*e^5 - (C*a*c - A*c^2)*d^4*e 
^2 + 3*(C*a^2 - A*a*c)*d^2*e^4)*x)*sqrt(-c/a)*log((c*x^2 - 2*a*x*sqrt(-c/a 
) - a)/(c*x^2 + a)) - 2*(B*c^2*d^4*e^2 - B*a^2*e^6 + 2*(C*a*c - A*c^2)*d^3 
*e^3 + 2*(C*a^2 - A*a*c)*d*e^5)*x - (B*c^2*d^5*e - 3*B*a*c*d^3*e^3 + 3*(C* 
a*c - A*c^2)*d^4*e^2 - (C*a^2 - A*a*c)*d^2*e^4 + (B*c^2*d^3*e^3 - 3*B*a*c* 
d*e^5 + 3*(C*a*c - A*c^2)*d^2*e^4 - (C*a^2 - A*a*c)*e^6)*x^2 + 2*(B*c^2*d^ 
4*e^2 - 3*B*a*c*d^2*e^4 + 3*(C*a*c - A*c^2)*d^3*e^3 - (C*a^2 - A*a*c)*d*e^ 
5)*x)*log(c*x^2 + a) + 2*(B*c^2*d^5*e - 3*B*a*c*d^3*e^3 + 3*(C*a*c - A*c^2 
)*d^4*e^2 - (C*a^2 - A*a*c)*d^2*e^4 + (B*c^2*d^3*e^3 - 3*B*a*c*d*e^5 + 3*( 
C*a*c - A*c^2)*d^2*e^4 - (C*a^2 - A*a*c)*e^6)*x^2 + 2*(B*c^2*d^4*e^2 - 3*B 
*a*c*d^2*e^4 + 3*(C*a*c - A*c^2)*d^3*e^3 - (C*a^2 - A*a*c)*d*e^5)*x)*log(e 
*x + d))/(c^3*d^8*e + 3*a*c^2*d^6*e^3 + 3*a^2*c*d^4*e^5 + a^3*d^2*e^7 + (c 
^3*d^6*e^3 + 3*a*c^2*d^4*e^5 + 3*a^2*c*d^2*e^7 + a^3*e^9)*x^2 + 2*(c^3*d^7 
*e^2 + 3*a*c^2*d^5*e^4 + 3*a^2*c*d^3*e^6 + a^3*d*e^8)*x), -1/2*(C*c^2*d^6 
- 3*B*c^2*d^5*e - 2*B*a*c*d^3*e^3 + B*a^2*d*e^5 + A*a^2*e^6 - (2*C*a*c - 5 
*A*c^2)*d^4*e^2 - 3*(C*a^2 - 2*A*a*c)*d^2*e^4 - 2*(3*B*a*c*d^4*e^2 - B*...
 
3.1.49.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=\text {Timed out} \]

input
integrate((C*x**2+B*x+A)/(e*x+d)**3/(c*x**2+a),x)
 
output
Timed out
 
3.1.49.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 495, normalized size of antiderivative = 1.62 \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=\frac {{\left (B c^{2} d^{3} - 3 \, B a c d e^{2} + 3 \, {\left (C a c - A c^{2}\right )} d^{2} e - {\left (C a^{2} - A a c\right )} e^{3}\right )} \log \left (c x^{2} + a\right )}{2 \, {\left (c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} + a^{3} e^{6}\right )}} - \frac {{\left (B c^{2} d^{3} - 3 \, B a c d e^{2} + 3 \, {\left (C a c - A c^{2}\right )} d^{2} e - {\left (C a^{2} - A a c\right )} e^{3}\right )} \log \left (e x + d\right )}{c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} + a^{3} e^{6}} + \frac {{\left (3 \, B a c^{2} d^{2} e - B a^{2} c e^{3} - {\left (C a c^{2} - A c^{3}\right )} d^{3} + 3 \, {\left (C a^{2} c - A a c^{2}\right )} d e^{2}\right )} \arctan \left (\frac {c x}{\sqrt {a c}}\right )}{{\left (c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} + a^{3} e^{6}\right )} \sqrt {a c}} - \frac {C c d^{4} - 3 \, B c d^{3} e + B a d e^{3} + A a e^{4} - {\left (3 \, C a - 5 \, A c\right )} d^{2} e^{2} - 2 \, {\left (B c d^{2} e^{2} - B a e^{4} + 2 \, {\left (C a - A c\right )} d e^{3}\right )} x}{2 \, {\left (c^{2} d^{6} e + 2 \, a c d^{4} e^{3} + a^{2} d^{2} e^{5} + {\left (c^{2} d^{4} e^{3} + 2 \, a c d^{2} e^{5} + a^{2} e^{7}\right )} x^{2} + 2 \, {\left (c^{2} d^{5} e^{2} + 2 \, a c d^{3} e^{4} + a^{2} d e^{6}\right )} x\right )}} \]

input
integrate((C*x^2+B*x+A)/(e*x+d)^3/(c*x^2+a),x, algorithm="maxima")
 
output
1/2*(B*c^2*d^3 - 3*B*a*c*d*e^2 + 3*(C*a*c - A*c^2)*d^2*e - (C*a^2 - A*a*c) 
*e^3)*log(c*x^2 + a)/(c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + a^3*e^ 
6) - (B*c^2*d^3 - 3*B*a*c*d*e^2 + 3*(C*a*c - A*c^2)*d^2*e - (C*a^2 - A*a*c 
)*e^3)*log(e*x + d)/(c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + a^3*e^6 
) + (3*B*a*c^2*d^2*e - B*a^2*c*e^3 - (C*a*c^2 - A*c^3)*d^3 + 3*(C*a^2*c - 
A*a*c^2)*d*e^2)*arctan(c*x/sqrt(a*c))/((c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2* 
c*d^2*e^4 + a^3*e^6)*sqrt(a*c)) - 1/2*(C*c*d^4 - 3*B*c*d^3*e + B*a*d*e^3 + 
 A*a*e^4 - (3*C*a - 5*A*c)*d^2*e^2 - 2*(B*c*d^2*e^2 - B*a*e^4 + 2*(C*a - A 
*c)*d*e^3)*x)/(c^2*d^6*e + 2*a*c*d^4*e^3 + a^2*d^2*e^5 + (c^2*d^4*e^3 + 2* 
a*c*d^2*e^5 + a^2*e^7)*x^2 + 2*(c^2*d^5*e^2 + 2*a*c*d^3*e^4 + a^2*d*e^6)*x 
)
 
3.1.49.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 516, normalized size of antiderivative = 1.69 \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=\frac {{\left (B c^{2} d^{3} + 3 \, C a c d^{2} e - 3 \, A c^{2} d^{2} e - 3 \, B a c d e^{2} - C a^{2} e^{3} + A a c e^{3}\right )} \log \left (c x^{2} + a\right )}{2 \, {\left (c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} + a^{3} e^{6}\right )}} - \frac {{\left (B c^{2} d^{3} e + 3 \, C a c d^{2} e^{2} - 3 \, A c^{2} d^{2} e^{2} - 3 \, B a c d e^{3} - C a^{2} e^{4} + A a c e^{4}\right )} \log \left ({\left | e x + d \right |}\right )}{c^{3} d^{6} e + 3 \, a c^{2} d^{4} e^{3} + 3 \, a^{2} c d^{2} e^{5} + a^{3} e^{7}} - \frac {{\left (C a c^{2} d^{3} - A c^{3} d^{3} - 3 \, B a c^{2} d^{2} e - 3 \, C a^{2} c d e^{2} + 3 \, A a c^{2} d e^{2} + B a^{2} c e^{3}\right )} \arctan \left (\frac {c x}{\sqrt {a c}}\right )}{{\left (c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} + a^{3} e^{6}\right )} \sqrt {a c}} - \frac {C c^{2} d^{6} - 3 \, B c^{2} d^{5} e - 2 \, C a c d^{4} e^{2} + 5 \, A c^{2} d^{4} e^{2} - 2 \, B a c d^{3} e^{3} - 3 \, C a^{2} d^{2} e^{4} + 6 \, A a c d^{2} e^{4} + B a^{2} d e^{5} + A a^{2} e^{6} - 2 \, {\left (B c^{2} d^{4} e^{2} + 2 \, C a c d^{3} e^{3} - 2 \, A c^{2} d^{3} e^{3} + 2 \, C a^{2} d e^{5} - 2 \, A a c d e^{5} - B a^{2} e^{6}\right )} x}{2 \, {\left (c d^{2} + a e^{2}\right )}^{3} {\left (e x + d\right )}^{2} e} \]

input
integrate((C*x^2+B*x+A)/(e*x+d)^3/(c*x^2+a),x, algorithm="giac")
 
output
1/2*(B*c^2*d^3 + 3*C*a*c*d^2*e - 3*A*c^2*d^2*e - 3*B*a*c*d*e^2 - C*a^2*e^3 
 + A*a*c*e^3)*log(c*x^2 + a)/(c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 
+ a^3*e^6) - (B*c^2*d^3*e + 3*C*a*c*d^2*e^2 - 3*A*c^2*d^2*e^2 - 3*B*a*c*d* 
e^3 - C*a^2*e^4 + A*a*c*e^4)*log(abs(e*x + d))/(c^3*d^6*e + 3*a*c^2*d^4*e^ 
3 + 3*a^2*c*d^2*e^5 + a^3*e^7) - (C*a*c^2*d^3 - A*c^3*d^3 - 3*B*a*c^2*d^2* 
e - 3*C*a^2*c*d*e^2 + 3*A*a*c^2*d*e^2 + B*a^2*c*e^3)*arctan(c*x/sqrt(a*c)) 
/((c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + a^3*e^6)*sqrt(a*c)) - 1/2 
*(C*c^2*d^6 - 3*B*c^2*d^5*e - 2*C*a*c*d^4*e^2 + 5*A*c^2*d^4*e^2 - 2*B*a*c* 
d^3*e^3 - 3*C*a^2*d^2*e^4 + 6*A*a*c*d^2*e^4 + B*a^2*d*e^5 + A*a^2*e^6 - 2* 
(B*c^2*d^4*e^2 + 2*C*a*c*d^3*e^3 - 2*A*c^2*d^3*e^3 + 2*C*a^2*d*e^5 - 2*A*a 
*c*d*e^5 - B*a^2*e^6)*x)/((c*d^2 + a*e^2)^3*(e*x + d)^2*e)
 
3.1.49.9 Mupad [B] (verification not implemented)

Time = 19.08 (sec) , antiderivative size = 2980, normalized size of antiderivative = 9.77 \[ \int \frac {A+B x+C x^2}{(d+e x)^3 \left (a+c x^2\right )} \, dx=\text {Too large to display} \]

input
int((A + B*x + C*x^2)/((a + c*x^2)*(d + e*x)^3),x)
 
output
(log(d + e*x)*(e^3*(C*a^2 - A*a*c) - B*c^2*d^3 + d^2*e*(3*A*c^2 - 3*C*a*c) 
 + 3*B*a*c*d*e^2))/(a^3*e^6 + c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4) 
 - (log(9*A^2*a^5*e^10*(-a*c)^(5/2) + A^2*c^5*d^10*(-a*c)^(5/2) - B^2*a^7* 
e^10*(-a*c)^(3/2) - 9*B^2*c^3*d^10*(-a*c)^(7/2) + 9*C^2*a^9*e^10*(-a*c)^(1 
/2) + C^2*c*d^10*(-a*c)^(9/2) + 9*C^2*a^9*c*e^10*x - 6*A^2*a*d^4*e^6*(-a*c 
)^(9/2) - 6*B^2*a*d^6*e^4*(-a*c)^(9/2) + 106*A^2*c*d^6*e^4*(-a*c)^(9/2) + 
77*C^2*a*d^8*e^2*(-a*c)^(9/2) - 27*B^2*c*d^8*e^2*(-a*c)^(9/2) + A^2*a^2*c^ 
8*d^10*x + 9*A^2*a^7*c^3*e^10*x + 9*B^2*a^3*c^7*d^10*x + B^2*a^8*c^2*e^10* 
x + C^2*a^4*c^6*d^10*x + 27*A^2*a^3*d^2*e^8*(-a*c)^(7/2) - 106*B^2*a^3*d^4 
*e^6*(-a*c)^(7/2) + 77*B^2*a^5*d^2*e^8*(-a*c)^(5/2) - 77*A^2*c^3*d^8*e^2*( 
-a*c)^(7/2) - 106*C^2*a^3*d^6*e^4*(-a*c)^(7/2) - 6*C^2*a^5*d^4*e^6*(-a*c)^ 
(5/2) + 27*C^2*a^7*d^2*e^8*(-a*c)^(3/2) + 18*A*C*a^7*e^10*(-a*c)^(3/2) + 2 
*A*C*c^3*d^10*(-a*c)^(7/2) + 224*A*B*a*d^5*e^5*(-a*c)^(9/2) - 48*A*B*a^5*d 
*e^9*(-a*c)^(5/2) - 212*A*C*a*d^6*e^4*(-a*c)^(9/2) + 64*A*B*c*d^7*e^3*(-a* 
c)^(9/2) + 48*A*B*c^3*d^9*e*(-a*c)^(7/2) - 64*B*C*a*d^7*e^3*(-a*c)^(9/2) - 
 48*B*C*a^7*d*e^9*(-a*c)^(3/2) - 154*A*C*c*d^8*e^2*(-a*c)^(9/2) + 77*A^2*a 
^3*c^7*d^8*e^2*x + 106*A^2*a^4*c^6*d^6*e^4*x - 6*A^2*a^5*c^5*d^4*e^6*x - 2 
7*A^2*a^6*c^4*d^2*e^8*x - 27*B^2*a^4*c^6*d^8*e^2*x - 6*B^2*a^5*c^5*d^6*e^4 
*x + 106*B^2*a^6*c^4*d^4*e^6*x + 77*B^2*a^7*c^3*d^2*e^8*x + 77*C^2*a^5*c^5 
*d^8*e^2*x + 106*C^2*a^6*c^4*d^6*e^4*x - 6*C^2*a^7*c^3*d^4*e^6*x - 27*C...